0	FULL NAME	DUE DATE	
ų	SCIENCE CLASS	TEACHER	
	Combined Sciences: Pl	hysics Homework/Exter	nsion Sheet T2pt1.4
aking your booklet home	1. What is the resultant force acting on the car shown in the diagram? 20 000 N ^(1 mark) 700 N 450 N	2. What force is required to accelerate a 10 kg mass by 1.5 m/s ² ? (2 marks)	3 . A speed of 15 km/s is the same as which of these? (1 mark)
ige out if you are not ti	not to scale ↓ 20 000 N ▲: 1150 N left B: 250 N left C: 250 N right D: 1150 N right	 ☐ A: 6.7 N ☐ B: 8.5 N ☐ C: 0.15 N ☐ D: 15 N 	 A: 150 m/s B: 15000 m/s C: 0.15 m/s D: 0.0015 m/s
nework pa	4 . (a) An apple with a mass of 150 g in Calculate the force pulling the a	s being pulled towards the centre of th apple downwards.	e Earth due to gravity.
ou may cut this hor	gravitational field strength at th	use W = m × g ne surface of the Earth = 10 N/kg	
ا ۲ ا		Force pulling	the apple downwards =N
	(b) When Neil Armstrong walked o When Neil Armstrong walked o Use this information to calculat	on the Moon in 1969 his total mass, inc on the Moon his weight pressing down te the gravitational field strength at the cant figures	luding spacesuit, was 158 kg. on the surface was 254 N. e surface of the Moon.
	Give your answer to two signin	cant ligures.	(2 marks)
		gravitational field stre	ngth on the Moon =N/kg
	5. A student gets angry and punches a Their fist exerts a force of 2500 Use Newton's 3rd law of motio injured.	a wall as hard as they can. N pushing the wall right. n to explain why the student's hand ge	its
		(3	e marks)

Ę	(t)	Ĵ,	Ð				고 수		2		د ۲ ۲	×	×	× :	×	·ŀ	·I•	•• ••
		Ħ		보									se	хцэ.	tric pr	θM		
								1										
	$a = \frac{(v-u)}{t}$	$F = m \times a$	$W = m \times g$	<i>p</i> = <i>m</i> × <i>v</i>	$\Delta GPE = m \times g \times \Delta h$	$KE = \frac{1}{2} \times m \times v^2$		$v = f \times \lambda$	$v = \frac{x}{t}$	$E = F \times d$	$P = \frac{E}{t}$	$E = Q \times V$	$Q = I \times t$	$V = I \times R$	$P = \frac{E}{t}$	$P = I \times V$	$P = l^2 \times R$	$b = \frac{\Lambda}{m}$
distance travelled = average speed × time	acceleration = change in velocity ÷ time taken	force = mass × acceleration	weight = mass × gravitational field strength	HT momentum = mass × velocity	change in gravitational potential energy = mass \times gravitational field strength \times change in vertical height	kinetic energy = $1/2 \times \text{mass} \times (\text{speed})^2$	efficiency = $\frac{(useful energy transferred by the device)}{(total energy supplied to the device)}$	wave speed = frequency × wavelength	wave speed = distance ÷ time	work done = force \times distance moved in the direction of the force	power = work done ÷ time taken	energy transferred = charge moved × potential difference	charge = current × time	potential difference = current × resistance	power = energy transferred ÷ time taken	electrical power = current × potential difference	electrical power = (current) ² × resistance	density = mass ÷ volume

	force exerted on a spring = spring constant × extension	$F = k \times x$
	(final velocity) ² – (initial velocity) ² = $2 \times \text{acceleration} \times \text{distance}$	$v^2 - u^2 = 2 \times a \times x$
누	force = change in momentum ÷ time	$F = \frac{(mv - mu)}{t}$
	energy transferred = current × potential difference × time	$E = I \times V \times t$
F	force on a conductor at right angles to a magnetic field carrying a current = magnetic flux density × current × length	$F = B \times I \times l$
	For transformers with 100% efficiency, potential difference across primary coil × current in primary coil = potential difference across secondary coil × current in secondary coil	$V_{\rm P} imes I_{\rm P} = V_{\rm S} imes I_{\rm S}$
	change in thermal energy = mass \times specific heat capacity \times change in temperature	$\Delta Q = m \times c \times \Delta \theta$
	thermal energy for a change of state = mass \times specific latent heat	$Q = m \times L$
	energy transferred in stretching = $0.5 \times \text{spring constant} \times (\text{extension})^2$	$E = \frac{1}{2} \times k \times x^2$

