FULL	NAME		DUE DATE		
SCIEN	ICE CLASS	TEACHER			
Con	nbined Scien	ices: Physics Home	work/Exte	nsion Sheet T2	pt1.3
I . Whi	ich of these is a vecto	or?2. A trolley takes 0.(1 mark)from the top to the slope. The length o m long. What was t average speed?	40 s to travel e bottom of a f the slop was 3.0 the trolley's (2 marks)	3 . How long would it ta is accelerating at a con m/s ² to increase its vel m/s? use a = (v - u	ake a car that stant rate of ocity by 10) ÷ t (2marks
A: B: C: D:	distance force mass temperature	 A: 1.2 m/s B: 7.5 m/s C: 0.13 m/s D: 2.6 m/s 		 A: 5 s B: 20 s C: 0.2 s D: 8 s 	
4 . A su	ubmarine was at rest	under the sea. It starts to mov	e forwards while s	till travelling at a consta	nt depth.
4 . A su (a)	ıbmarine was at rest Draw a free body for	under the sea. It starts to mov rce diagram for all of the forces	e forwards while s acting on the sub	till travelling at a consta marine as it starts to mo	nt depth. we forwards (2 mark
4 . A su (a)	ubmarine was at rest Draw a free body for	under the sea. It starts to mov rce diagram for all of the forces	e forwards while s acting on the sub The lengths of th free-body force d proportional to th	till travelling at a consta marine as it starts to mo e arrows on a liagram should be he sizes of the forces.	nt depth. we forwards (2 mark
4 . A su (a) (b)	ubmarine was at rest Draw a free body for Generation After several minutes Use Newton's 1st lav	under the sea. It starts to mov rce diagram for all of the forces the resistive forces acting on w of motion to explain what ha	e forwards while s acting on the sub The lengths of th free-body force d proportional to the the submarine been	till travelling at a consta marine as it starts to mo e arrows on a liagram should be he sizes of the forces. come equal to the forwa city of the submarine.	nt depth. ove forwards (2 mark
4 . A su (a) (b)	Ibmarine was at rest Draw a free body for After several minutes Use Newton's 1st lav	under the sea. It starts to mov rce diagram for all of the forces the resistive forces acting on w of motion to explain what ha	e forwards while s acting on the sub The lengths of th free-body force d proportional to the the submarine bee ppens to the veloc	till travelling at a consta marine as it starts to mo e arrows on a liagram should be he sizes of the forces. come equal to the forwa city of the submarine.	nt depth. ove forwards (2 mark ard thrust, (2 mark
4 . A su (a) (b) (c)	Ibmarine was at rest Draw a free body for After several minutes Use Newton's 1st lav The submarine starts experienced by the s (i) Calculate the r	under the sea. It starts to mov rce diagram for all of the forces the resistive forces acting on w of motion to explain what ha s to surface by filling ballast tar submarine is 5 500 000 N. The v resultant force acting on the su	e forwards while s acting on the sub The lengths of th free-body force d proportional to th the submarine bee ppens to the veloc	till travelling at a consta marine as it starts to mo e arrows on a liagram should be he sizes of the forces. come equal to the forwa city of the submarine. this happens the upthru narine is 5 450 000 N. ts to surface	nt depth. ove forwards (2 mark ard thrust, (2 mark
4 . A su (a) (b) (c)	Ibmarine was at rest Draw a free body for After several minutes Use Newton's 1st law The submarine starts experienced by the s (i) Calculate the r	under the sea. It starts to mov rce diagram for all of the forces we the resistive forces acting on w of motion to explain what ha s to surface by filling ballast tar submarine is 5 500 000 N. The v resultant force acting on the su	e forwards while s acting on the sub The lengths of th free-body force d proportional to th the submarine bed ppens to the veloc	till travelling at a consta marine as it starts to mo e arrows on a liagram should be he sizes of the forces. come equal to the forwa city of the submarine. this happens the upthru narine is 5 450 000 N. ts to surface	nt depth. ove forwards (2 mark ard thrust, (2 mark ust (1 mark
4. A su (a) (b) (c)	ubmarine was at rest Draw a free body for After several minutes Use Newton's 1st law The submarine starts experienced by the s (i) Calculate the r (ii) The mass of th motion to calc	under the sea. It starts to mov rce diagram for all of the forces the resistive forces acting on w of motion to explain what ha s to surface by filling ballast tar submarine is 5 500 000 N. The v resultant force acting on the su	e forwards while s acting on the sub The lengths of th free-body force d proportional to th the submarine bee ppens to the veloc hks with air. When weight of the subm bmarine as it start	till travelling at a consta marine as it starts to mo e arrows on a liagram should be he sizes of the forces. come equal to the forwa city of the submarine. this happens the upthru narine is 5 450 000 N. ts to surface resultant force =	nt depth. ove forwards (2 mark ard thrust, (2 mark (2 mark (1 mark (1 mark

L

I I

Ę	(t)	Ĵ,	Ð				고 수		2		د ع	×	×	× :	×	·ŀ	·I•	•• ••
		Ħ		보									se	хцэ.	tric pr	θM		
								1										
	$a = \frac{(v-u)}{t}$	$F = m \times a$	$W = m \times g$	<i>p</i> = <i>m</i> × <i>v</i>	$\Delta GPE = m \times g \times \Delta h$	$KE = \frac{1}{2} \times m \times v^2$		$v = f \times \lambda$	$v = \frac{x}{t}$	$E = F \times d$	$P = \frac{E}{t}$	$E = Q \times V$	$Q = I \times t$	$V = I \times R$	$P = \frac{E}{t}$	$P = I \times V$	$P = l^2 \times R$	$b = \frac{\Lambda}{m}$
distance travelled = average speed × time	acceleration = change in velocity ÷ time taken	force = mass × acceleration	weight = mass × gravitational field strength	HT momentum = mass × velocity	change in gravitational potential energy = mass \times gravitational field strength \times change in vertical height	kinetic energy = $1/2 \times \text{mass} \times (\text{speed})^2$	efficiency = $\frac{(useful energy transferred by the device)}{(total energy supplied to the device)}$	wave speed = frequency × wavelength	wave speed = distance ÷ time	work done = force \times distance moved in the direction of the force	power = work done ÷ time taken	energy transferred = charge moved × potential difference	charge = current × time	potential difference = current × resistance	power = energy transferred ÷ time taken	electrical power = current × potential difference	electrical power = (current) ² × resistance	density = mass ÷ volume

	force exerted on a spring = spring constant × extension	$F = k \times x$
	(final velocity) ² – (initial velocity) ² = $2 \times \text{acceleration} \times \text{distance}$	$v^2 - u^2 = 2 \times a \times x$
누	force = change in momentum ÷ time	$F = \frac{(mv - mu)}{t}$
	energy transferred = current × potential difference × time	$E = I \times V \times t$
F	force on a conductor at right angles to a magnetic field carrying a current = magnetic flux density × current × length	$F = B \times I \times l$
	For transformers with 100% efficiency, potential difference across primary coil × current in primary coil = potential difference across secondary coil × current in secondary coil	$V_{\rm P} imes I_{\rm P} = V_{\rm S} imes I_{\rm S}$
	change in thermal energy = mass \times specific heat capacity \times change in temperature	$\Delta Q = m \times c \times \Delta \theta$
	thermal energy for a change of state = mass \times specific latent heat	$Q = m \times L$
	energy transferred in stretching = $0.5 \times \text{spring constant} \times (\text{extension})^2$	$E = \frac{1}{2} \times k \times x^2$

