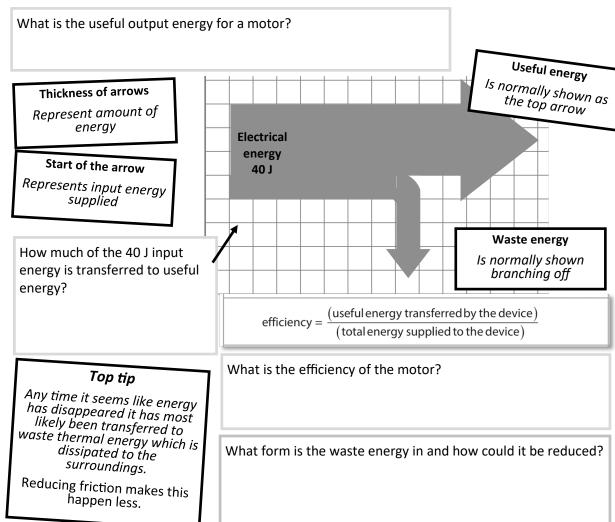
Section A

1) What is the unit that energy is measured in?		4) How is power calculated from energy and time?		
	A: Joules (J)		A: power = energy + time	
	B: Newtons (N)		B: power = energy × time	
	C: Watts (W)		C: power = time ÷ time	
	D: Volts (V)		D: power = energy ÷ time	
2) Wł	hat form of energy is stored in batteries and fuel?	5) W	hich of the following quantities is a vector?	
	A: Electrical		A: force	
	B: Kinetic Energy		B: speed	
	C: Chemical		C: distance	
	D: Gravitational Potential Energy		D: mass	
-	of the energy supplied to another device is ferred into other forms. This is an example of A: renewable energy B: non-renewable energy C: conservation of energy D: catalysis	-	hich of these values cannot possibly be an accurate sure of efficiency? A: 120 % B: 50 % C: 0.5 D: 0.05	

Sort the forms of energies into the table.

	Transfers	Stores
ı———— ki		
i		
i gravitatio		
!		
•		
elastic		
Ĺ		


kinetic energy
thermal
light
gravitational potential energy
chemical
sound
electrical
elastic potential energy
nuclear

Pick energy names from the list to create energy transfers for these situations without using any energy more than once

Situation	Input		Output(s)
The ceiling lights in a room are turned on at the wall.		\rightarrow	
A football is kicked high into the air.		\rightarrow	
A battery operated radio is turned on.		\rightarrow	

Section B

The diagram below shows how the total electrical energy supplied to a motor is transferred.

Sort the quantities from the box into the correct column of the table \downarrow

mass distance acceleration speed velocity energy time power force displacement

Key Word: **scalar** a quantity with magnitude only

Key Word: **vector** a quantity with magnitude AND direction

Scalai	Vector

Circle the non-contact forces in this list \downarrow

weight/gravity
normal reaction
tension
friction
air resistance
water resistance
upthrust/buoyancy
thrust/engine force
magnetism
electrostatic force

book pages 371-373 combined sciences text book pages 374-378

T8

Energy -

Forces

Doing Work FOUNDATION

nd

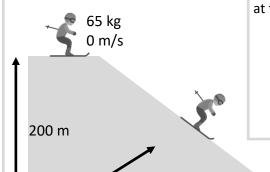
T9

Forces

and

their Effects FOUNDATION

Link to BBC Bitesize


Link to BBC Bitesize

Section C

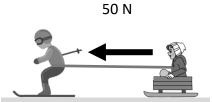
change in gravitational potential energy = mass \times gravitational field strength \times change in vertical height	$\Delta GPE = m \times g \times \Delta h$	
kinetic energy = $1/2 \times \text{mass} \times (\text{speed})^2$	$KE = \frac{1}{2} \times m \times v^2$	

gravitational field strength, g is roughly 10 N/kg on Earth

Show that the skier gained more than 100 kJ of gravitational potential energy when they climbed to the top of the slope

Show that the kinetic energy of the skier at the bottom of the slope is roughly 14 kJ.

65 kg 21 m/s


Suggest how much gravitational potential energy the skier has when they are halfway down the slope.

Suggest why the kinetic energy stored in the skier at the bottom of the slope is not equal to the gravitational potential energy stored in the skier at the top of the slope.

(hint: their skis are rubbing against the snow on the way down)

work done = force \times distance moved in the direction of the force	$E = F \times d$
power = work done ÷ time taken	$P = \frac{E}{t}$

The skier pulls their niece along by pulling on a rope. The tension in the rope if 50 N.

Calculate the work done when the sledge is pulled 1.2 km.

What is the power of the skier if it takes them 12 minutes to do pull the sledge that far?

..... W

Section D - give all answers in standard units

How much energy is required to lift a 1.5 kg bag of sugar from a worktop to a shelf 0.8 m higher up?	How much kinetic energy is stored in a 1.5 kg bag of sugar falling at a speed of 4 m/s?	A person pushes a wheelbarrow 30 m down a garden path by applying a constant force of 50 N. How much work was done moving the wheelbarrow?
What is the efficiency of a lightbulb that emits 10 J of light energy for every 150 J of electrical energy that it is supplied with? Give your answer as a decimal.	What is the power of a device that takes 120 s to do 24 J of work?	What distance was a brick moved if a force of 50 N was applied to it and a total of 20 000 J of work was done on it?
A motor in an elevator transfers 480 kJ of energy into gravitational potential energy. If it takes 30 s to do this, what is the power of the motor?	A motor is 20 % efficient. If it is supplied with 80 kJ of energy, how much kinetic energy does it output?	How much work is done by a device with a power of 20 W in 2 minutes?
If an object gains 500 J of energy when it is lifted 0.6 m upwards, what must the mass of the object be?	What force must be applied to a boulder to do 20 kJ of work moving it 110 m?	State the velocity of a 20 g bullet that possesses 37.5 kJ of kinetic energy.

Ansı	400	16000	12	182	150	2400
wers	12	1936	0.2	16000	83	7