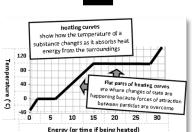


and degrees

 $centigrade \rightarrow$

0

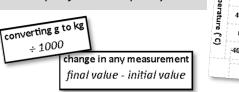
293

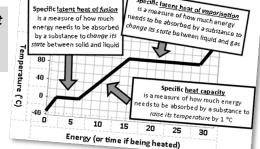

-25

Section B

Add labels from the word list to the **heating curve** and answer the questions after \downarrow

120 LIST 80 boiling; 40 gas; melting; solid: liquid 10 15 20 25 30 5 Time heated (min)

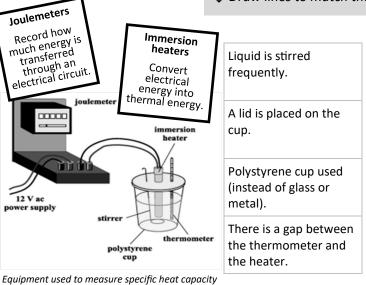

State the melting point of the substance °C


State the boiling point of the substance °C

Suggest a temperature where the substance is liquid °C

↓ The raw results of an experiment investigating the specific heat capacity of a liquid are shown in the table below. Fill in the blanks and calculate the specific heat capacity.

Mass of empty polystyrene cup (g)	0.01
Mass of cup and liquid (g)	0.16
Mass of liquid (g)	
Mass of liquid (kg)	
Initial temperature (°C)	19.4
final temperature (°C)	24.6
change in temperature (°C)	
Energy transferred (J)	3.3
Specific heat capacity (J/kg°C)	4



Use this equation to calculate specific heat capacity

change in thermal energy = mass \times specific heat capacity \times change in temperature

 $\Delta Q = m \times c \times \Delta \theta$

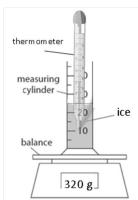
\downarrow Draw lines to match the steps in the method to the reasons behind them

Insulating material reduces energy the dissipates to the surroundings.

Ensures the temperature being measured is of the liquid not the heater.

Ensures thermal energy added is spread evenly.

Stops dissipation of energy to the surroundings by convection.


book pages 413-425

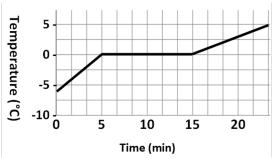
MIXE

Link to BBC Bitesize

Section C

\downarrow Answer the questions about the **melting ice practical**

Equipment used to produce a temperature-time graph for

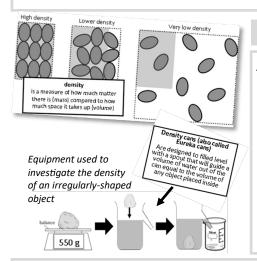

melting ice

What was the melting point of the ice sample?°C

At what time after the start had the sample fully melted? minutes

For how many minute was the sample melting? ... minutes

Describe how the reading on the balance would change as the ice melted:

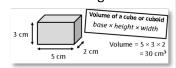


temperature-time graph for a sample of melting ice

A student calculated that a 0.025 kg block of ice absorbed 8.35 kJ of energy during melting. Use this equation to calculate the specific latent heat of fusion for ice.

thermal energy for a change of state = $mass \times specific$ latent

 $Q = m \times L$


↓ Answer the questions about **density**

A wine cork has a volume of 6.5 cm³ and its mass is 90 g. Use this equation to calculate the **density**. Give your answers in g/cm³

density = mass
$$\div$$
 volume $\rho = \frac{m}{V}$

A 550 g rock displaces 204 cm³ of water from a density can. What is the **density** of the rock in g/cm³?

An engineer designing a plane wing orders a sheet of aluminium that is 0.1 m deep, 0.8 m wide and 0.01 m tall. The density of aluminium is 2710 kg/m³. Calculate the mass of the aluminium sheet in kg.

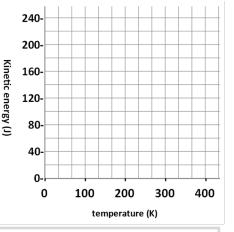
Section D

particles are olliding with ti walls of their with what force

So what must the pressure of a gas in a fixed

temperature of 0 K (absolute zero)?

volume container be at 0 K?


How much kinetic energy do any particles have at a

Plot the data on the graph on the graph and add a line of best fit \rightarrow

	•
Temperature (K)	Kinetic energy (J)
100	60
200	120
300	180
400	240

Describe the relationship between temperature and the average So what happens to the pressure of a gas in a fixed kinetic energy of gas particles ↑ volume container as its temperature increases?

↓ Give you answers to these questions to an appropriate number of significant figures and in standard units.

An Olympic silver medal weighs 210g and displaces 20 cm³ of water when submerged in a density can. Use this information to calculate the density of silver. Give your answer in g/cm³.

kg of ice? Latent heat of vaporisation of water = | energy was dissipated to the $2.25 \times 10^6 \text{ J/kg}$ Latent heat of fusion of water = $3.34 \times 10^5 \text{ J/kg}$

How much energy is needed to melt 10 A 450 g aluminium door knocker cools down to -10 °C from 4 °C. How much surroundings? (the specific heat capacity of aluminium is 900 J/kg°C)

The specific heat capacity of copper is 385 J/kg°C How much hotter would 2 kg of copper | g/cm³ get if it absorbed 2310 J of energy from the surroundings?

A cube with sides of 3.0 cm is made out of stone that has a density of 2.5

What is the mass of the cube?

To make a gold ring a jewellery melts 4 g of solid gold. 252 J of thermal energy is absorbed by the gold while melting. What is the specific latent heat of fusion for gold? Give your answer in kJ/kg.

Answers	3 300 000	68	11	60	3	6000
					_	