Section A

1) Th	e voltage and frequency of UK mains electricity is
	A: 110 V and 60 Hz
	B: 230 V and 50 Hz
	C: 50 V and 230 Hz
	D: 60 V and 110 Hz
direc	hat is described as 'the movement of charge in one tion only'? A: potential difference B: resistance C: direct current
Ц	D: alternating current
3) W	hich of these is not an electrical safety feature
	A: fuse
	B: circuit breaker
	C: Earth wire
	D: thermistor

4) Name the quantity that has been measured if t	h
measurement is 110 W	

A: power
B: energy

☐ **C**: potential difference

D:	charge

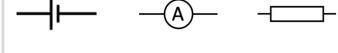
5) What should you do to an LDR to lower its resistance?

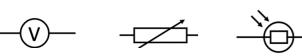
┙	A: make it warm	e
_	Pr make it colder	

J **B:** make it colder

C: increase the light intensity shining on itD: decrease the light intensity shining on it

6) Which of the following supplies alternating current (AC)?


☐ **A:** batteries


☐ **B:** mains plug sockets

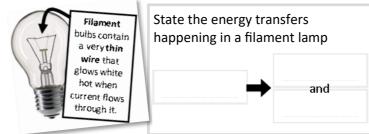
☐ **C**: cells

☐ **D**: solar panels

Name each of the components represented by these symbols.

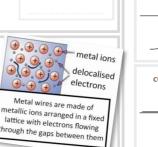
Draw a circuit diagram for a circuit that could be used to calculate how the resistance of a fixed resistor changes as the current flowing through it changes.

Many devices are connected to mains electricity using a cable that contains three different wires. Draw lines to match the wires to their features and function

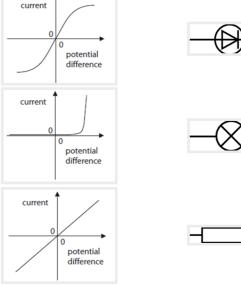

Potential difference	Wire	Colour
230 V	Neutral	Blue
0 V	Live	green/ yellow
0 V	Earth	Brown or Red

Function

Connects to the output of a power station.	
Completes the circuit back to the power station.	0


neutral z cable grip outer insulation
Name the parts of the plug shown in the diagram.
x
Υ
Z

Section B



Explain why as the current flowing through a filament lamp increases, so does the resistance of the filament lamp.

Include the words: Electrons, ions, vibration, collisions.

Match the components with the graphs that show how current through them varies with potential difference across them.

Suggest changes that could be made to the wires in a circuit to reduce energy lost to the surroundings due to the heating effect.

•

•

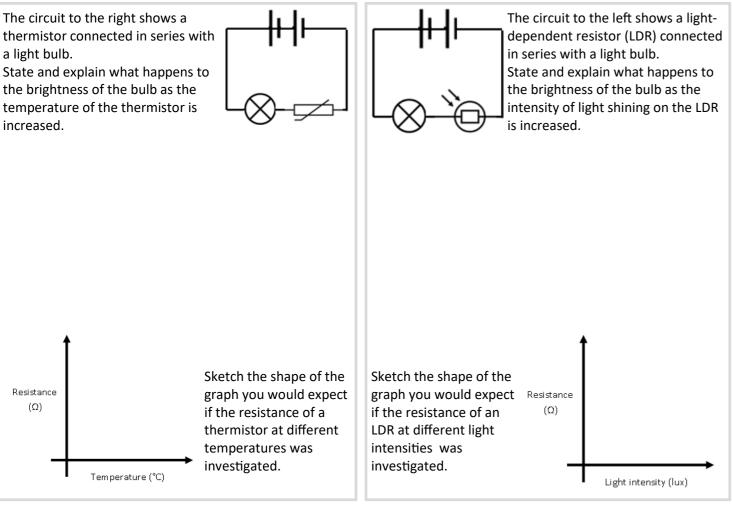
.

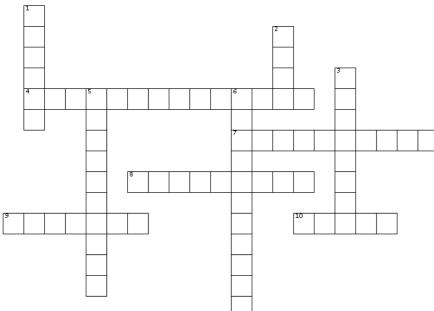
The image shows a thirteen amp fuse. Describe in detail how a thirteen amp fuse protects devices from getting damaged if they become faulty.

Suggest the names of at least three devices that make **use** of the heating effect of an electric current.

Tick all the boxes that apply

Tick all the boxes that apply			
Safety feature	Disconnects the live wire if there is a fault	Acts quickly enough to prevent electrocution	Protects devices and wiring from damage
Fuse			
Circuit breaker			
Earth wire			


nbined sciences text ok nages 388-400


MIXED

ink to BBC Bitesize

Section C

ACROSS

- 4. a device that can disconnect a live wire from a circuit very quickly if current becomes too larger (7,7)
- 7. a component designed so that its resistance decreases as its temperature increases (10)
- 8. name of the charged particles that move through a wire when a current flows (9)
- through a wire when a current flows (9)

 9. word used to describe the regular arrangement of ions inside a metal (7)
- 10. the name for the wire coloured green/ yellow inside UK mains plugs (5)

DOWN

- 1. type of current supplied by cells and batteries (6)
- 2. electrical component designed to break circuits if current becomes too larger (4)
- 3. electrical component represented by a hollow rectangle in circuit diagrams (8)
- 5. what occurs between electrons and ions inside an electrical component that results in the component heating up (10)
- 6. type of current supplied by the national grid (11)

		electrical power = current × potential difference	$P = I \times V$	
power = energy transferred ÷ time taken	, t	electrical power = (cu	rrent) ² × resistance	$P = I^2 \times R$

What is the power of a device that transfers 50 J of electrical energy into other forms of energy every 25 seconds?	Calculate the power of a device that needs to be connected to a 12 V power supply for a current of 3 A to flow through it.	What is the electrical power if a component has a total resistance of 120 Ω and 0.5 A is flowing through it?
Calculate the potential difference across a component if its power rating is 2 W and the current flowing through it is 0.5 A.	How long would it take for a guitar amplifier with a power rating of 15 W to transfer 300 J of electrical energy in to other forms?	What is the total resistance of a device if 2.5 A of current is flowing through it and it has a power rating of 40 W?
An electric motor with a power rating of 50 W has a total resistance of 250 Ω . What is the maximum current that can flow through the motor? Give your answer to two decimal places.	25 kJ of energy is transferred by a device in 5 minutes. State the power of this device? Give your answer to one significant figure.	600 mA flows through a device with a power of 12 W. Calculate the total resistance of the device, giving your answer to two significant figures.

ANSWERS	33	4	80	5	
36	6.4	2	20	0.45	