5) Which of these forms of radiation is the most ionising?

B: beta minus

C: beta plus

D: gamma

3) Compared with a proton, the mass of an electron is

A: smaller

D: neutron

A: 1 x 10⁻⁶ m

B: 1 x 10⁻⁸ m

C: 1 x 10⁻¹⁰ m

D: 1 x 10⁻¹² m

2) Roughly what size is a single atom?

B: larger C: equal

В

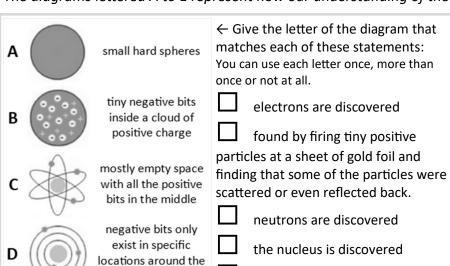
boron

= 11 - 5 = 4

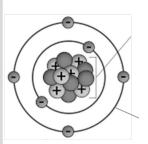
Isotope names are the name of the element, then a dash, then the mass So the isotope above is **Boron-11**.

D: opposite 6) What is the electrostatic charge on an alpha particle?

A: +2


B: +1 C: zero

D: -1


The diagrams lettered A to E represent how our understanding of the atomic model changed over time.

energy levels/orbitals are

nuclear model of the atom

Fill the blanks in the key and add labels for the modern model of the atom \downarrow

	Subatomic particle	Relative Charge	Relative Mass
\oplus			
		zero	

State the number of neutrons present in each of these isotopes \downarrow

outside the middle has

23 11 Be Na Carbon-14 Cobalt-60 mass number higher value. beryllium sodium ons + neutrons added to geth so number of neutrons = mass number - atomic number

discovered

neutrally charged bits this is the first example of the

Some types of radiation are more dangerous than others. Suggest why.

Carbon-14 and Carbon-12 are isotopes. Define the word **isotope**.

penetrating abilities compare \rightarrow +1 proton, -1 neutr Aluminum Paper Gamma decay (γ) Beta plus decay (β*) Top tip: Atomic numbers and mass numbers should both balance on each side of a nuclear equation xtremely penetratir rearrange but don't change.

$_{94}$ Pu \rightarrow $_{92}$ U + $_2$ α	106 Sg → 104 RT +
²²²² ₈₈ Ra \rightarrow Rn + ⁴ ₂ He	²² Na → ²² Ne +
$_{5}^{13}$ B $\rightarrow _{6}^{13}$ C $+_{-1}^{0}$ β	¹³¹ ₅₃ → ¹³¹ ₅₄ Xe +
$_{9}^{18}$ F \rightarrow $_{-18}^{18}$ O $+$ $_{+1}^{0}$ β	¹⁵¹ ₆₇ Ho → ¹⁴⁷ ₁₄₇ Tb +


263

Fill the blanks in this summary table for the different types of radiation

Complete the following nuclear equations

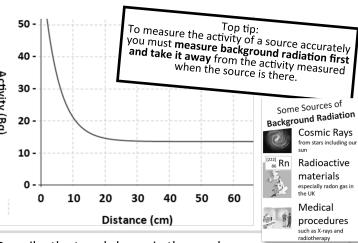
239

Name	Description of the radiation that is emitted	Description of how a nucleus changes	How strongly ionising is the radiation?	What material and how thick to stop the radiation?
alpha				sheet of paper or few centimetres of air.
beta minus		one fewer neutrons. one more protons.		
beta plus	Positron (+1 charge Particle the size of an electron)			
gamma			weak	

Radioactivity MIXED

Bitesize

Section C

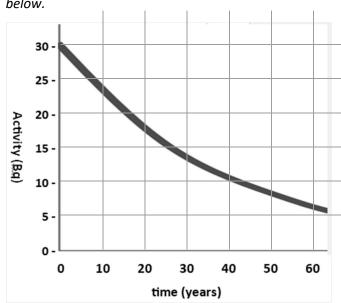

The sample being held in front of a GM tube connected to a counter

A teacher demonstrates how to investigate how the intensity of the radiation from a radioactive source varies with distance from a $\frac{7}{8}$ detector.

Their results are shown in the graph to the right.

A student makes the following conclusion.

"When it was 20 cm from the GM tube the activity of the radioactive source was roughly 15 Bq" Explain why the student's conclusion is inaccurate.



Describe the trend shown in the graph

Use the graph to estimate the level of background radiation where the investigation was completed and suggest some sources for this radiation.

An investigation is performed into how the activity of a sample of strontium-90 changes over 60 years.

The results of this investigation are shown in the graph below.

A sample of a different isotope has an initial activity of 20 Bg and a half-life of 10 years.

Sketch, on the same axes, the activity of this sample for the first forty years.

Key Word: half-life

The time taken for half of the undecayed radioactive nuclei in a sample to decay.

Use the graph to estimate the half life of strontium-90

Iodine-131 has a half-life of 8 days.

A samples of Iodine-131 is analysed and found to have 0.0500 g of undecayed nuclei.

- (i) What mass of undecayed nuclei will there have been 8 days before the analysis?
- (ii) What mass of undecayed nuclei will there be 8 days after the analysis?
- (iii) How long after the analysis would you have to wait for the sample to have decreased to 0.0125 g?

Section D

the type of nuclear decay that results in a helium nucleus being ejected

positron being ejected (4,4) outside of an atom (6,5)

electron being ejected

that explains why it is impossible to predict exactly when it will occur (6)

atoms with the same number of protons but different numbers of

18. what happened to a small number of alpha particles that were fired at loses an electron (3) 17. what an atom becomes if it gains or

word used to describe the radioactive decay of an unstable nucleus

the

lectron is located

7. the type of nuclear decay

the centre

of

the type

12. where

thin gold foil (10)

19.

neutrons (8)

word applied to radiation produced by stars including our own sun (6) sub-atomic particle with zero charge found in the centre of atoms (7) 23.

24. magnitude of the electrostatic charge on a neutron (4)

alpha particles are the
the time taken for the

of this element (6)

nucleus (

σ

same

are the

positive sub-atomic particle in the centre of atoms that give them their of undecayed nuclei in a radioactive 5. the unit of activity of a radioactive isotope, unit symbol Bq (9) source to decrease by half identity (6)

13. gas that is the largest source of background radiation in the UK (5) radiation, often shortened to cells can lead that results in a high-energy the number of neutrons in an atom of carbon-14 (5) damage caused by ionising radiation to living electromagnetic wave being ejected (5) type of tube used for detecting 11. the type of nuclear decay 10.

o GM (6,6) to this (8)

sub-atomic particles with a negative charge (8) the name of the particle emitted during beta plus decay (8) a disease commonly associated with damage to living cells from

ionising radiation (6)